Sequential Marginal Likelihood Change Detection: Sequential Monte Carlo Approach

T. Matsumoto

Graduate School of Science and Engineering
Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 Japan
E-mail: takashi@mse.waseda.ac.jp

Abstract

Consider sequential data

$$y_{1:t} := (y_1, ..., y_t) = (y_{1:t-1}, y_t), t = 1, 2, ..., y_{1:1} := y_1$$

from an unknown system with changing parameter(s). A plausible likelihood function can be of the form $P(y_t | \theta_t, \beta_t, \mathcal{H})$ defined through "basis" functions parameterized by θ_t , with β_t being a possible hyperparameter, and \mathcal{H} represents the underlying model structure. We will consider the stochastic online learning dynamics for parameters and hyperparameters:

$$P(\theta_{t}, \gamma_{t}, \beta_{t} \mid \theta_{t-1}, \gamma_{t-1}, \beta_{t-1}, y_{t-1}, \mathcal{H}) = P(\theta_{t} \mid \theta_{t-1}, \gamma_{t}, y_{t-1}, \mathcal{H}) P(\gamma_{t} \mid \gamma_{t-1}, \mathcal{H}) P(\beta_{t} \mid \beta_{t-1}, \mathcal{H})$$

where γ_t is another hyperparameter that controls the θ_t -dynamics.

This study attempts to perform online change detection by examining the time dependency of the *sequential marginal likelihood*:

$$t \mapsto \begin{cases} P(y_t \mid y_{1:t-1}, \mathcal{H}) = \iint P(y_t \mid \theta_t, \beta_t, \mathcal{H}) P(\theta_t, \alpha_t \mid y_{1:t-1}, \mathcal{H}) d\theta_t d\alpha_t \\ P(y_{1:t} \mid \mathcal{H}) = \prod_{s=1}^{t} P(y_s \mid y_{1:s-1}, \mathcal{H}) \end{cases}$$

$$(1)$$

with \mathcal{H} fixed, where $\alpha_s := (\beta_s, \gamma_s)$ and utilizing Sequential Monte Carlo for evaluation.

Example: Only available observation in this example is a one dimensional time series data (left) from a higher order nonlinear dynamical system (the Rossler system) where an internal change occurs at t = 500 indicated by the arrow. Observe that the change in the observed data is rather subtle. The figure on the right is $\log P(y_t \mid y_{1:t-1}, \mathcal{H})$ which appears to indicate possibility of online change detection of unknown system via (1). References:

- [1] A. Doucet et. al, eds., Sequential Monte Carlo in Practice, Springer, (2001)
- [2] D. J. C. MacKay, *Information Theory, Inference, and Learning Algorithms*, Cambridge University Press, (2004)
- [3] T. Matsumoto, et. al, IEEE Transactions on Signal Processing, 49, 2138 (2001)